Source code for capytaine.meshes.predefined.spheres

"""Generate spherical bodies."""
# Copyright (C) 2017-2024 Matthieu Ancellin
# See LICENSE file at <https://github.com/capytaine/capytaine>
import logging

import numpy as np
from numpy import pi

from capytaine.meshes.geometry import Axis
from capytaine.meshes.meshes import Mesh
from capytaine.meshes.symmetric import AxialSymmetricMesh

LOG = logging.getLogger(__name__)


[docs] def mesh_sphere(*, radius=1.0, center=(0.0, 0.0, 0.0), resolution=(10, 10), faces_max_radius=None, axial_symmetry=False, name=None): """Sphere Parameters ---------- radius : float radius of the sphere center : 3-ple or array of shape (3,) position of the geometric center of the sphere resolution : couple of ints number of panels along a meridian (or number of parallels-1) and along a parallel (or number of meridians-1) faces_max_radius : float, optional maximal radius of a panel. (Default: no maximal radius.) If the provided resolution is too coarse, the number of panels is changed to fit the constraint on the maximal radius. axial_symmetry : bool if True, use the axial symmetry to build the mesh (default: False) name : string a name identifying the sphere (default: "sphere_id" where id is an unique integer). """ if name is None: name = f"sphere_{next(Mesh._ids)}" ntheta, nphi = resolution if faces_max_radius is not None: perimeter = 2*np.pi*radius estimated_max_radius = np.hypot(perimeter/ntheta, perimeter/nphi)/2 if estimated_max_radius > faces_max_radius: ntheta = nphi = int(np.ceil(perimeter / (np.sqrt(2)*faces_max_radius))) theta = np.linspace(0.0, pi, ntheta+1) points_on_a_meridian = radius * np.stack([np.sin(theta), np.zeros_like(theta), -np.cos(theta)], axis=1) symmetry_axis = Axis(vector=[0, 0, 1], point=[0, 0, 0]) mesh = AxialSymmetricMesh.from_profile(points_on_a_meridian, axis=symmetry_axis, nphi=nphi, name=name) if not axial_symmetry: mesh = mesh.merged() mesh.heal_mesh() mesh.translate(center) mesh.geometric_center = np.asarray(center, dtype=float) return mesh