Source code for capytaine.post_pro.rao

"""Experimental function to compute the Response Amplitude Operator."""
# Copyright (C) 2017-2019 Matthieu Ancellin
# See LICENSE file at <https://github.com/mancellin/capytaine>

import logging

import numpy as np
import xarray as xr
from capytaine.post_pro.impedance import rao_transfer_function

LOG = logging.getLogger(__name__)


[docs] def rao(dataset, wave_direction=None, dissipation=None, stiffness=None): """Response Amplitude Operator. Parameters ---------- dataset: xarray Dataset The hydrodynamical dataset. This function supposes that variables named 'inertia_matrix' and 'hydrostatic_stiffness' are in the dataset. Other variables can be computed by Capytaine, by those two should be manually added to the dataset. wave_direction: float, optional Select a wave directions for the computation. (Not recommended, kept for legacy.) Default: all wave directions in the dataset. dissipation: array, optional An optional dissipation matrix (e.g. Power Take Off) to be included in the RAO. Default: none. stiffness: array, optional An optional stiffness matrix (e.g. mooring stiffness) to be included in the RAO. Default: none. Returns ------- xarray DataArray The RAO as an array depending of omega and the degree of freedom. """ # ASSEMBLE MATRICES H = rao_transfer_function(dataset, dissipation, stiffness) fex = dataset.excitation_force LOG.info("Compute RAO.") # SOLVE LINEAR SYSTEMS # Match dimensions of the arrays to be sure to solve the right systems. H, fex = xr.broadcast(H, fex, exclude=["radiating_dof", "influenced_dof"]) H = H.transpose(..., 'radiating_dof', 'influenced_dof') fex = fex.transpose(..., 'influenced_dof') if wave_direction is not None: # Legacy behavior for backward compatibility H = H.sel(wave_direction=wave_direction) fex = fex.sel(wave_direction=wave_direction) # Solve and add coordinates rao_dims = [d for d in H.dims if d != 'influenced_dof'] rao_coords = {c: H.coords[c] for c in H.coords if c != 'influenced_dof'} rao = xr.DataArray(np.linalg.solve(H.values, fex.values[..., np.newaxis])[..., 0], coords=rao_coords, dims=rao_dims) return rao